Wang Bing  Professor

E-mail address: wbing@tsinghua.edu.cn

Address: Room 302, Building A6, Changping Research Base, Tsinghua University

Education background

1996.09-2000.07 Bachelor of Engineering, Department of Engineering Mechanics, Tsinghua University

2000.09-2005.01 Doctor of Engineering, School of Aerospace Engineering, Tsinghua University

Career Experience

2005.03-present School of Aerospace Engineering, Tsinghua University. Successively as lecturer, associate professor, professor, former deputy dean. Deputy dean of the school

2024.01-present Professor, deputy dean of Institute for Aeroengine, Tsinghua University

2006.10-2008.04 Humboldt Visiting Fellow, Technical University of Munich, Germany

Areas of Research Interests

Fundamentals in the field of aerospace propulsion

Flow and combustion instabilities

New concept propulsion and combined engines

Digital engines and high performance numerical simulation

Awards and Honours

Beijing Science and Technology Progress Award (2021)

Innovation Award of the Chinese Society of Invention (2020)

China Industry-University-Research Collaboration Promotion Association Innovation Promotion Award (2018, Individual)

Beijing Municipal Award for Teaching Achievements (2018)

Gold Medal for Invention at the International Invention Fair in Nuremberg, Germany; Silver Medal at the Geneva International Exhibition of Inventions; Gold Award at the Silicon Valley International Invention Fair in the United States.

Humboldt Scholar from Germany

AIAA Associate Fellowship (2020)

TUM Ambassador (2019)

ASME Senior Member

APS - Advanced Member of the Fluids Division

Academic Positions

Member of the AIAA Pressure Gain Combustion Technical Committee (2019–present) and District VII Committee (2020–present)

International Scientific Committee member of the International Conference on Combustion and Energy Utilization (ICCEU) (2019–present)

Member of the Organizing Committee of the 27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) (2019)

Chair of the 9th International Workshop on Detonation Propulsion (IWDP) (2018)

Member of the Chinese Society of Theoretical and Applied Mechanics' Shock Waves and Shock Tubes Committee (2020–present) and Environmental Mechanics Committee (2015–2020)

Vice President of the Multiphase Flow Division of the Chinese Society of Engineering Thermophysics (2020–present) and member of the Detonation and Novel Propulsion Committee (2017–present)

Vice President of the Beijing Society for Thermal Science and Energy Engineering (2023–present)

Vice President of the Beijing Society of Energy and Environmental Engineering (2024–present)

Member of the Scientific Committee of the International Symposium on Combustion Instability (2017)

Vice Chair of the Organizing Committee of the 11th International Symposium on Industrial Explosion Protection and Safety Technology (2017)

Editor-in-Chief of the Journal of Engineering

Associate Editor of Aerospace Science and Technology

Member of the Editorial Boards:

Chinese Journal of Aeronautics, Acta Aeronautica et Astronautica Sinica, Journal of Propulsion Technology, Rocket Propulsion, Journal of Ordnance Equipment Engineering, Gas Physics, Journal of Tsinghua University

Director of the Key Laboratory of Advanced Power and Propulsion, Ministry of Education

Director of the Beijing Key Laboratory of Rotating Detonation Propulsion and Its Application

Selected Papers

1) Compressible Two-Phase Flows

Xu,S.;Jin,X.;Fan,W.;Wen,H.;Wang,B.;2024.Numerical investigation on the interaction characteristics between the gaseous detonation wave and the water droplet.Combustion and Flame,269,113713.https://doi.org/10.1016/j.combustflame.2024.113713

Luo,H.;Guo,Y.;Xu,S.;Wen,H.;Wu,W.;Xiang,G.;Wang,B.;2024.Characteristics of a laser-induced bubble near the wedge between the gas-liquid interface and solid wall.Physics of Fluids,37,013308.https://doi.org/10.1063/5.0244850

Jin,X.;Su,P.;Chen,Z.;Cheng,X.;Wang,Q.;Wang,B.;2024.Numerical and experimental investigation of rarefied hypersonic flow in a nozzle. Physics of Fluids, 36,116131. https://doi.org/10.1063/5.0237548

Xu,S.;Wang,B.;2024.Numerical study on interaction characteristics between gaseous detonation and droplet. The 26th International Congress of Theoretical and Applied Mechanics,Daegu, Korea.

Fu,X.;Wen,H.;Wang,B.;2024.Research on characteristics of thermoacoustic instabilities in air-methane-ammonia premixed swirl-stabilized. The 10th Asian Joint Workshop on Thermophysics and Fluid Science(AJWTF),Zhangjiajie.

Huang,X.;Wang,B.;2024.Velocity-curvature-driven chemical model reduction for NH3-H2-air mixtures. The Third Asian Conference on Thermal Sciences(ACTS),Shanghai.

Xu, S.; Jin, X.; Wen, H.; Wang, B.; 2024. An enhanced compressible two-phase flow model with detailed chemistry under the adaptive mesh refinement frame. Physics of Fluids, 36(6). https://doi.org/10.1063/5.0213891

Xu, S.; Jin, X.; Chen, H.; Fan, W.; Wen, H.; Wang, B.; 2024. Modelling and simulation on compressible multi-component gas-liquid flows with chemical reaction and phase transition effects. Aerospace Science and Technology, 153, 109451. https://doi.org/10.1016/j.ast.2024.109451

Xu, S.; Fan, W.; Wu, W.; Wen, H.; Wang, B.*; 2023. Analysis of wave converging phenomena inside the shocked two-dimensional cylindrical water column. Journal of Fluid Mechanics, 964. https://doi.org/10.1017/jfm.2023.239

Xu, S.; Fan, W.; Wang, B.*; 2023. Analysis of wave evolution inside the cylindrical water droplet shocked by a planar shock wave. Paper presented at the 15th International Conference on Combustion and Energy Utilization (15th ICCEU), Beijing.

Xu, S.; Wang, B.*; 2023. Analysis of wave converging inside the cylindrical water column impinged by a cylindrical converged shock. Paper presented at The 34th International Symposium on Shock Waves (ISSW34), Daegu, Korea.

Xu, S.*; Wang, B.; 2023. Theoretical and numerical analysis of wave converging inside the two-dimensional cylindrical water column impinged by a curved shock wave. Paper presented at the 11th International Conference on Multiphase Flow(ICMF-2023), Kobe, Japan.

Jin, X.; Cheng, X.; Wang, Q.; Wang, B.; 2022. Numerical simulation for rarefied hypersonic flows over non-rectangular deep cavities. Physics of Fluids, 34(8). https://doi.org/10.1063/5.0102685

Jin, X.; Cheng, X.; Wang, Q.; Wang, B.; 2022. Numerical simulation for rarefied hypersonic flows over non-rectangular deep cavities. Physics of Fluids, 34(8). https://doi.org/10.1063/5.0102685

Gao, Z.; Wu, W.; Wang, B.*; 2021. The effects of nanoscale nucleion cavitation. Journal of Fluid Mechanics, 911, A20. https://doi.org/10.1017/jfm.2020.1049

Gao, Z.; Wu, W.; Sun, W.; Wang, B.*; 2021. Understanding the stabilization of a bulk nanobubble: a molecular dynamics analysis. Langmuir, 37(38), 11281-11291. https://doi.org/10.1021/acs.langmuir.1c01796(Cover article)

Wu, W.; Liu, Q.; Wang, B.; 2021. The effects of nanoscale nuclei on cavitation. Paper presented at the 25th International Congress of Theoretical and Applied Mechanics - ICTAM, 2020+1, Milan, Italy, August 22-27, 2021.

Wu, W.; Liu, Q.; Wang, B.*; 2021. Curved surface effect on high-speed droplet impingement. Journal of Fluid Mechanics, 909, A7. https://doi.org/10.1017/jfm.2020.926

Wu, W.; Wang, B.; Liu, Q.*; 2021. Tandem cavity collapse in a high-speed droplet impinging on a 180° constrained wall. Journal of Fluid Mechanics, 932, A52. https://doi.org/10.1017/jfm.2021.1044.

Xiang, G.; Ren, Z.; Kim, S.; Wang, B.*; 2020. Numerical analysis on the disintegration of gas-liquid interface in two-phase shear-layer flows. Aerospace Science and Technology, 98, 105710. https://doi.org/10.1016/j.ast.2020.105710

Wu, W.; Wang, B.*; Xiang, G.; 2019. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall: numerical analysis. Journal of Fluid Mechanics, 864, 1058–1087. https://doi.org/10.1017/jfm.2019.55

Xiang, G.; Wang, B.*; 2019. Theoretical and numerical studies on shock reflection at water/air two-phase interface: fast-slow case. International Journal of Multiphase Flow, 114, 219–228. https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.002

Zhang, C.; Xiang, G.M.; Wang, B.; Hu, X.Y.*; Adams, N.A.; 2019. A weakly compressible SPH method with WENO reconstruction. Journal of Computational Physics, 392, 1–18. https://doi.org/10.1016/j.jcp.2019.04.038

Herty, M.; Müller, S.*; Gerhard, N.; Xiang, G.; Wang, B.; 2018. Fluid-structure coupling of linear elastic model with compressible flow models. International Journal for Numerical Methods in Fluids, 86, 365–391. https://doi.org/10.1002/fld.4422

Wang, B.; Xiang, G.; Hu, X.Y.*; 2018. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows. International Journal of Multiphase Flow, 104, 20–31. https://doi.org/10.1016/j.ijmultiphaseflow.2018.03.013

Wu, W.; Xiang, G.; Wang, B.*; 2018. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects. Journal of Fluid Mechanics, 857, 851–877. https://doi.org/10.1017/jfm.2018.753

Xiang, G.; Wang, B.*; 2018. Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium. AIP Advances, 8, 075128. https://doi.org/10.1063/1.5047570(Editor's Choice)

Xiang, G.; Wang, B.*; 2017. Numerical study of a planar shock interacting with a cylindrical water column embedded with an air cavity. Journal of Fluid Mechanics, 825, 825–852. https://doi.org/10.1017/jfm.2017.403

Zhang, P.; Wang, B.*; 2017. Effects of elevated ambient pressure on the disintegration of impinged sheets. Physics of Fluids, 29, 042102. https://doi.org/10.1063/1.4981777

Hu, X.Y.*; Wang, B.; Adams, N.A.; 2015. An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. Journal of Computational Physics, 301, 415–424. https://doi.org/10.1016/j.jcp.2015.08.043

2) Compressible Reactive Flows

Jin,X.;Cheng,X.;Huang,Y.;Wang,Q.;Wang,B.;Ai,B.;2024.Numerical analysis of inlet flows in atmosphere-breathing electric propulsion systems with different sizes. Aerospace Science and Technology,158,109897.https://doi.org/10.1016/j.ast.2024.109897

Chen, Q.*; Wang B.*; 2021. The spatial growth of supersonic reacting mixing layers: Effects of combustion mode. Aerospace Science and Technology, 116, 106888. https://doi.org/10.1016/j.ast.2021.106888.

Shahsavari, M.; Wang, B.*; Zhang, B.; Jiang, G.; Zhao, D.; 2021. Response of supercritical round jets to various excitation modes. Journal of Fluid Mechanics, 915, A47. https://doi.org/10.1017/jfm.2021.78

Ren, Z.; Wang, B.*; Xiang, G.; Zhao, D.; Zheng, L.; 2019. Supersonic spray combustion subject to scramjets: progress and challenges. Progress in Aerospace Sciences, 105, 40–59. https://doi.org/10.1016/j.paerosci.2018.12.002

Ren, Z.; Wang, B.*; Zhang, F.; Zheng, L.; 2019. Effects of eddy shocklets on the segregation and evaporation of droplets in highly compressible shear layers. AIP Advances, 9, 125101. https://doi.org/10.1063/1.5125121

Ren, Z.; Wang, B.*; Hu, B.; Zheng, L.; 2018. Numerical analysis of supersonic flows over an aft-ramped open-mode cavity. Aerospace Science and Technology, 78, 427–437. https://doi.org/10.1016/j.ast.2018.05.003

Ren, Z.; Wang, B.*; Zhao, D.; Zheng, L.; 2018. Flame propagation involved in vortices of supersonic mixing layers laden with droplets: Effects of ambient pressure and spray equivalence ratio. Physics of Fluids, 30, 106107. https://doi.org/10.1063/1.5049840

Ren, Z.; Wang, B.*; Zheng, L.; 2018. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets. Physics of Fluids, 30, 036101. https://doi.org/10.1063/1.5011708(Featured article)

Ren, Z.; Wang, B.*; Zheng, L.; Zhao, D.; 2018. Numerical studies on supersonic spray combustion in high-temperature shear flows in a scramjet combustor. Chinese Journal of Aeronautics, 31, 1870–1879. https://doi.org/10.1016/j.cja.2018.06.020

Ren, Z.; Wang, B.*; Xie, Q.; Wang, D.; 2017. Thermal auto-ignition in high-speed droplet-laden mixing layers. Fuel, 191, 176–189. https://doi.org/10.1016/j.fuel.2016.11.073

Ren, Z.; Wang, B.*; Yang, S.; Xie, Q.; Liu, H.; Wang, D.; 2017. Evolution of flame kernel in one eddy turnover of high-speed droplet laden shear layers. Journal of Loss Prevention in the Process Industries, 49, 938–946. https://doi.org/10.1016/j.jlp.2017.05.009

Wang, B.*; Wei, W.; Zhang, Y.; Zhang, H.; Xue, S.; 2015. Passive scalar mixing in Mc <1 planar shear layer flows. Computers & Fluids, 123, 32–43. https://doi.org/10.1016/j.compfluid.2015.09.006

Zhang, Y.; Wang, B.*; Zhang, H.; Xue, S.; 2015. Mixing enhancement of compressible planar mixing layer impinged by oblique shock waves. Journal of Propulsion and Power, 31, 156–169. https://doi.org/10.2514/1.B35423

3) Continuous Rotating Detonation and Oblique Detonation

Wen, Q.; Wen, H.; Fan, W.; Zhang, B.; Wang, B.;2025.Propagation characteristics of pyrolysis gas/air rotating detonation wave laden with solid particles. Physics of Fluid,066105(2025), https://doi.org/10.1063/5.0267230

Wen,h.;Wang,b.;2024.Primary investigation on ram-rotor detonation engine. Chinese Journal of Aeronautics,37,66-68.https://doi.org/10.1016/j.cja.2024.05.016

Fan,W.;Shi,Y.;Wen,H.;Hu,H.;Chen,H.;Wang,B.;2024.Analysis of waves dynamics in a rotating detonation combustor fueled by kerosene. Physics of Fluids,36,106135.https://doi.org/10.1063/5.0231516

Dhi,Y.;Zhang,Y.;Jin,X.;Wen,H.;Wang,B.;2024.Parameter influence and calculation model of wall heat flux in kerosene two phase rotating detonation combustor. Combustion and Flame,273,113924.https://doi.org/10.1016/j.combustflame.2024.113924

Wen,H.;Wang,B.;2024.Theoretical analysis on the performance of ram-rotor detonation engine. The 10th Asian Joint Workshop on Thermophysics and Fluid Science(AJWTF),Zhangjiajie.

Fan,W.;Wang,B.;2024. Analysis of wave dynamics in multiphase rotating detonation combustors. 2nd BICTAM-CISM Symposium on Dispersed Multiphase Flows: from Measuring to Modeling,Beijing.

Shi,Y.;Wen,H.;Wang,B.;2024.Research on the spatiotemporal distribution measurement method of wall heat flux in rotating detonation combustor. The 10th Asian Joint Workshop on Thermophysics and Fluid Science(AJWTF),Zhangjiajie.

Zhao,P.;Wen,H.;Wang,B.;2024.Lagrangian analysis of thermal nitrogen oxide generation in rotating detonation combustors. The 10th Asian Joint Workshop on Thermophysics and Fluid Science(AJWTF),Zhangjiajie.

Wang, X.; Wen, H.; Wen, Q.; Wang, B.; 2024. Physics-informed recurrent super-resolution generative reconstruction in rotating detonation combustor. Proceedings of the Combustion Institute, 40(1-4), 105649. https://doi.org/10.1016/j.proci.2024.105649

Wang, X.; Wen, H.*; Wang, B.*; 2024. Super-resolution flow-field reconstruction in rotating detonation combustors. Aerospace Science and Technology, 144. https://doi.org/10.1016/j.ast.2023.108740

Shi, Y.; Zhang, Y.; Wen, H.*; Wang, B.*; 2024. Comprehensive analysis method of acquiring wall heat fluxes inrotating detonation combustors. Experimental Thermal and Fluid Science, 152: 111120. https://doi.org/10.1016/j.expthermflusci.2023.111120

Zhang, Y.; Shi, Y.; Wen, H.; Wang, B.* 2024. Experimental study on the influence of the wall cavity on stability of kerosene two-phase rotating detonation combustion. Aerospace Science and Technology, 147. https://doi.org/10.1016/j.ast.2024.109025.

Zhang, B.; Wen, H.; Deng, H.; Tang, X.; Huang, M.; Wen, Q.; Wang, B.*; Tian, X.; 2023. Numerical investigation of the pressure gain obtained by the double-stage Jp-10/Air detonation wave. Aerospace Science and Technology, 142, 108701. https://doi.org/10.1016/j.ast.2023.108701

Yan, C.; Zhao, J.; Tong, Y.; Wang, B.; Shu, C.; Nie, W.; Lin, W.*; 2023. Formation and evolution of the numerical air-breathing rotating detonation fueled by C12H23. Combustion Science and Technology. https://doi.org/10.1080/00102202.2023.2226816

Yan, C.; Nie, W.; Wang, B.; Lin, W.*; 2023. Rotating detonation combustion of liquid kerosene under near-ramjet limit conditions. AIP Advances, 13(6). https://doi.org/10.1063/5.0157988

Wen, H.; Fan, W.; Xu, S.; Wang, B.*; 2023. Numerical study on droplet evaporation and propagation stability in normal-temperature two-phase rotating detonation system. Aerospace Science and Technology, 138. https://doi.org/10.1016/j.ast.2023.108324

Wen, H.; Fan, W.; Wang, B.*; 2023. Theoretical analysis on the total pressure gain of rotating detonation systems. Combustion and Flame, 248. https://doi.org/10.1016/j.combustflame.2022.112582

Wen, H.; Wang, B.*; Fan, W.; 2023. Propagation behaviour of two-phase rotating detonation waves at normal-temperature. Paper presented at The 34th International Symposium on Shock Waves (ISSW34), Daegu, Korea.

Wang, X.; Wen, H.*; Hu, T.; Wang, B.*; 2023. Flow-field reconstruction in rotating detonation combustor based on physics-informed neural network. Physics of Fluids, 35(7). https://doi.org/10.1063/5.0154979

Wang, X.; Wen, H.; Wang, B.*; 2023. Data-driven multi-mode recognition and reconstruction of the rotating detonation chamber. Paper presented at The 29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS2023), SNU Siheung.

Wang, B.; Ren, Z.; 2023. Effects of fuel concentration gradient on stabilization of oblique detonation waves in kerosene–air mixtures. Flow, Turbulence and Combustion, 111, no. 3: 1059-77. https://doi.org/10.1007/s10494-023-00425-2

Fan, W.; Wen, H.; Wang, B; 2023. A numerical study of propagation of rotating detonation wave under non-uniform inflow conditions. Paper presented at The 34th International Symposium on Shock Waves (ISSW34), Daegu, Korea.

Ren, Z.; Sun, Y.; Wang B.*; 2022. Propagation behaviors of the rotating detonation wave in kerosene-air two-phase mixtures with wide equivalence ratios. Flow Turbulence and Combustion, 110, 735-753. https://doi.org/10.1007/s10494-022-00393-z

Wen, H.; Wei, W.; Fan, W.; Xie, Q.; Wang, B.*; 2022. On the propagation stability of droplet-laden two-phase rotating detonation waves. Combustion and Flame, 244. https://doi.org/10.1016/j.combustflame.2022.112271

Zhang, B.; Shahsavari, M.; Chen, J.; Wen, H.; Wang, B.*; Tian, X.*; 2022. The propagation characteristics of particle-laden two-phase detonation waves in pyrolysis mixtures of C(s)/H2/CO/CH4/O2/N2. Aerospace Science and Technology, 130. https://doi.org/10.1016/j.ast.2022.107912

Ji, Z.; Zhang, B.; Zhang, H.; Wang, B.*; Wang, C.; 2022. Reduction of feedback pressure perturbation for rotating detonation combustors. Aerospace Science and Technology, 126, 1070635. https://doi.org/10.1016/j.ast.2022.107635

Zhang, B.; Chen, J.; Shahsavari, M.; Wen, H.; Wang, B.*; Tian, X.*; 2022. Effects of inert dispersed particles on the propagation characteristics of a H2/Co/Air detonation wave. Aerospace Science and Technology, 126, 107660. https://doi.org/10.1016/j.ast.2022.107660

Ji, Z.; Zhang, H.; Wang, B.*; 2021. Thermodynamic performance analysis of the rotating detonative airbreathing combined cycle engine. Aerospace Science and Technology 113, 106694. https://doi.org/10.1016/j.ast.2021.106694.

Ren, Z.; Wang, B.*; Zheng, L.; 2021. Wedge-induced oblique detonation waves in supersonic kerosene-air premixing flows with oscillating pressure. Aerospace Science and Technology, 110. https://doi.org/10.1016/j.ast.2020.106472

Ren, Z.,; Wang, B.*; Wen, J.; Zheng, L.; 2021. Stabilization of wedge-induced oblique detonation waves in pre-evaporated kerosene–air mixtures with fluctuating equivalence ratios. Shock Waves, 31(7), 727-739. https://doi.org/10.1007/s00193-021-01050-6

Ji, Z.; Duan, R.; Zhang, R.; Zhang, H.; Wang, B.*; 2020. Comprehensive performance analysis for the rotating detonation-based turboshaft engine. International Journal of Aerospace Engineering, 9587813. https://doi.org/10.1155/2020/9587813

Ji, Z.; Zhang, H.; Wang, B.*; He, W.; 2020. Comprehensive performance analysis of the turbofan with a multi-annular rotating detonation duct burner. Journal of Engineering for Gas Turbines and Power-Transactions 142(2), 021007. https://doi.org/10.1115/1.4045518

Ma, J.; Luan, M.; Xia, Z..; Wang, J.*; Zhang, S.; Yao, S.; Wang, B.; 2020. Recent progress, development trends, and consideration of continuous detonation engines. AIAA Journal, 58(12), 4976-5035. https://doi.org/10.2514/1.J058157

Ren, Z.; Wang, B.*; 2020. Numerical study on stabilization of wedge-induced oblique detonation waves in premixing kerosene-air mixtures. Aerospace Science and Technology, 107, 106245. https://doi.org/10.1016/j.ast.2020.106245

Wang, B.; Wang, J.; 2020. Introduction to the special section on recent progress on rotating detonation and its application, AIAA Journal, 58(12), 4974-4975. https://doi.org/10.2514/1.J060144

Wen, H.; Wang, B.*; 2020. Experimental study of perforated-wall rotating detonation combustors. Combustion and Flame, 213, 52-62. https://doi.org/10.1016/j.combustflame.2019.11.028

He, W.; Xie, Q.; Ji, Z.; Rao, Z.; Wang, B.*; 2019. Characterizing continuously rotating detonation via nonlinear time series analysis. Proceedings of the Combustion Institute, 37, 3433–3442. https://doi.org/10.1016/j.proci.2018.07.045

Ji, Z.; Zhang, H.; Wang, B.*; 2019. Performance analysis of dual-duct rotating detonation aero-turbine engine. Aerospace Science and Technology, 92, 806–819. https://doi.org/10.1016/j.ast.2019.07.011

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene–air mixtures. Proceedings of the Combustion Institute, 37, 3627–3635. https://doi.org/10.1016/j.proci.2018.08.038

Wen, H.; Xie, Q.; Wang, B.*; 2019. Propagation behaviors of rotating detonation in an obround combustor. Combustion and Flame, 210, 389–398. https://doi.org/10.1016/j.combustflame.2019.09.008

Xie, Q.; Wang, B.*; Wen, H.; He, W.; 2019. Thermoacoustic instabilities in an annular rotating detonation combustor under off-design condition. Journal of Propulsion and Power, 35, 141–151. https://doi.org/10.2514/1.B37044

Xie, Q.; Wang, B.*; Wen, H.; He, W.; Wolanski, P.; 2019. Enhancement of continuously rotating detonation in hydrogen and oxygen-enriched air. Proceedings of the Combustion Institute, 37, 3425–3432. https://doi.org/10.1016/j.proci.2018.08.046

Ren, Z.; Wang, B.*; Xiang, G.; Zheng, L.; 2018. Effect of the multiphase composition in a premixed fuel–air stream on wedge-induced oblique detonation stabilisation. Journal of Fluid Mechanics, 846, 411–427. https://doi.org/10.1017/jfm.2018.289

Xie, Q.; Wen, H.; Li, W.; Ji, Z.; Wang, B.*; Wolanski, P.; 2018. Analysis of operating diagram for H2/Air rotating detonation combustors under lean fuel condition. Energy, 151, 408–419. https://doi.org/10.1016/j.energy.2018.03.062

Zheng, D.; Wang, B.*; 2018. Utilization of nonthermal plasma in pulse detonation engine ignition. Journal of Propulsion and Power, 34, 539–549. https://doi.org/10.2514/1.B36591

4) Combustion Instability

Jin, X ; Xu, S; Wang, B ; Okano, Y ; Yu, JD; 2025. Dissolution and growth process of indium gallium antimonide crystal growth under different gravity levels. Physics of Fluids. 037115(2025).https://pubs.aip.org/aip/pof/article/37/3/037115/3338703/Dissolution-and-growth-process-of-indium-gallium

Fu, XL; Rao, ZM; Hu, HF; Yang, JW; Wen, HC ; Wang, B;2025. Experimental study on the thermoacoustic instability and bifurcation phenomenon of ammonia-methane premixed swirl-stabilized combustor. Combustion and Flame, 113963(2025). https://doi.org/10.1016/j.combustflame.2025.113963

Xu, GY ; Wang, B ; Liu, PJ ; Guan, Y; 2025. Numerical investigation of the velocity-coupled response of propellant burning rate in a solid rocket motor. Aerospace science and technology.110118(2025),https://www.sciencedirect.com/science/article/pii/S1270963825001890

Xu,G.;Wang,B.;Liu,P.;Guan,Y.;2024.Data-driven identifcation of the critical transition to thermoacoustic instability in a full-scale solid rocket motor. Physics of Fluids,36,124127.https://doi.org/10.1063/5.0246774

Luo,F.;Wen,H.;Wang,B.;2024.Utilizing data-driven model to predict the combustion dynamics of rotating detonation engines. The 10th Asian Joint Workshop on Thermophysics and Fluid Science(AJWTF),Zhangjiajie.

Xu, G.; Wang, B.*; Guan, Y.; Wang, Z.; Liu, P.; 2024. Early detection of thermoacoustic instability in a solid rocket motor: a generative adversarial network approach with limited data. Applied Energy, 373, 123776. https://doi.org/10.1016/j.apenergy.2024.123776

Xu, G.; Wang, B.*; Jin, B.; Wang, Z.; Liu, P. 2024. Numerical study of triggered thermoacoustic instability driven by linear and nonlinear combustion response in a solid rocket motor. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0191166.

Zhao, X.; Zhao, D.; Shelton, C.M.; Wang, B.*; Dong, X.; Li, J.; Huang, Y. 2024. Outlet boundary condition and mean temperature gradient effects on the minimum acoustics disturbances energy in triggering nonlinear thermoacoustic instability. Physics of Fluids, 36(3). https://doi.org/10.1063/5.0191982.

Xu, G.; Wang, B.; Guan, Y.; Wang, Z.; Liu, P.*; 2023. Early detection of hopf bifurcation in a solid rocket motor via transfer learning. Physics of Fluids, 35, no. 12. https://doi.org/10.1063/5.0174860.

Saqib Akhtar, M.; Shahsavari, M.; Ghosh, A.; Wang, B.*; Hussain, Z.; Rao, Z.; 2023. Effect of fuel reactivity on flame properties of a low-swirl burner. Experimental Thermal and Fluid Science, 142. https://doi.org/10.1016/j.expthermflusci.2022.110795

Rao, Z.; Li, R.; Zhao, P.; Wang, B.*; Zhao, D.; Xie, Q.; 2022. Similarity phenomena of lean swirling flames at different bulk velocities with acoustic disturbances. Chinese Journal of Aeronautics. https://doi.org/10.1016/j.cja.2022.07.001

Li, W.; Zhao, D.*; Chen,X.; Sun, Y.; Ni, S.; Guan, D.;Wang, B.; 2021. Numerical investigations on solid-fueled ramjet inlet thermodynamic properties effects on generating self-sustained combustion instability. Aerospace Science and Technology, 119, 107097. https://doi.org/10.1016/j.ast.2021.107097

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Akhtar, M.S.; 2021. Experimental investigations of equivalence ratio effect on nonlinear dynamics features in premixed swirl-stabilized combustor. Aerospace Science and Technology, 112,106601. https://doi.org/10.1016/j.ast.2021.106601

Rao, Z.; Li, R.; Zhang, B.; Wang, B.*; Zhao, D.; Shahsavari, M.; 2021. Nonlinear dynamics of a swirl-stabilized combustor under acoustic excitations: influence of the excited combustor natural mode oscillations. Flow, Turbulence and Combustion, 107, 683-708. https://doi.org/10.1007/s10494-021-00249-y

Shahsavari, M.*; Farshchi, M.; Arabnejad, M.H.; Wang, B.; 2021. The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow. Combustion Science and Technology, 1-26. https://doi.org/10.1080/00102202.2021.1976766

Zhang, B.;Shahsavar, M.; Rao, Z.; Yang, S.; Wang, B.*; 2021. Thermoacoustic Instability Drivers and Mode Transitions in a Lean Premixed Methane-Air Combustor at Various Swirl Intensities. Proceedings of the Combustion Institute, 38(4): 6115-6124. https://doi.org/10.1016/j.proci.2020.06.226

Ji, S.; Wang, B.*; Zhao, D.; 2020. Numerical analysis on combustion instabilities in end-burning-grain solid rocket motors utilizing pressure-coupled response functions. Aerospace Science and Technology, 98, 105701. https://doi.org/10.1016/j.ast.2020.105701

Qin, J.; Zhou, L.; Zhang, H.*; Wang, B.; 2020. Numerical evaluation of acoustic characteristics of a thrust chamber with quarter-wave resonators. Science China-Technological Sciences, 64, 375-386. https://doi.org/10.1007/s11431-019-1575-6

Sun, Y.; Rao, Z.; Zhao, D.*; Wang, B.; Sun, D.; Sun, X.; 2020. Characterizing nonlinear dynamic features of self-sustained thermoacoustic oscillations in a premixed swirling combustor. Applied Energy, 264, 114698. https://doi.org/10.1016/j.apenergy.2020.114698

Zhang, B.; Shahsavari, M.; Rao, Z.; Li, R.; Yang, S.; Wang, B.*; 2020. Effects of the fresh mixture temperature on thermoacoustic instabilities in a lean premixed swirl-stabilized combustor. Physics of Fluids, 32, 047101. https://doi.org/10.1063/1.5133859

Ji, S.; Wang, B.*; 2019. Modeling and analysis of triggering pulse to thermoacoustic instability in an end-burning-grain model solid rocket motor. Aerospace Science and Technology, 95, 105409. https://doi.org/10.1016/j.ast.2019.105409

Shahsavari, M.*; Farshchi, M.; Chakravarthy, S.R.; Chakraborty, A.; Aravind, I.B.; Wang, B.; 2019. Low swirl premixed methane-air flame dynamics under acoustic excitations. Physics of Fluids, 31, 095106. https://doi.org/10.1063/1.5118826 (Editor's Pick)

Zhang, B.; Shahsavari, M.; Rao, Z.; Yang, S.; Wang, B.; 2019. Contributions of hydrodynamic features of a swirling flow to thermoacoustic instabilities in a lean premixed swirl stabilized combustor. Physics of Fluids, 31, 075106. https://doi.org/10.1063/1.5108856 (Editor's Pick)

Qin, J.; Zhang, H.; Wang, B.*; 2018. Numerical evaluation of acoustic characteristics and their damping of a thrust chamber using a constant-volume bomb model. Chinese Journal of Aeronautics, 31, 470–480. https://doi.org/10.1016/j.cja.2018.01.007

Qian, C.; Bing, W.*; Huiqiang, Z.; Yunlong, Z.; Wei, G.; 2016. Numerical investigation of H2/air combustion instability driven by large scale vortex in supersonic mixing layers. International Journal of Hydrogen Energy, 41, 3171–3184. https://doi.org/10.1016/j.ijhydene.2015.11.029

5) Other

Dai,W.;Wang,B.;2024.Total cost of ownership analysis of hydrogen/ammonia continuous rotating detonation micro gas engine system. THE 3rd SYMPOSIUM on AMMONIA ENERGY,Shanghai.

Jin, X.; Miao, W.; Cheng, X.; Wang, Q.; Wang, B.* 2024. Monte Carlo simulation of inlet flows in atmosphere-breathing electric propulsion. AIAA Journal, 62(2): 518-529. https://doi.org/10.2514/1.J062718.

Jin, X.*; Wang, B.; 2023. Numerical investigation of the effects of axial temperature gradient and cooling rate on InGaSb crystal growth under microgravity. Journal of Crystal Growth, 607. https://doi.org/10.1016/j.jcrysgro.2023.127110

Jin, X.; Xu, S.; Wang, B.; Chen, Z.*; 2023. Numerical Investigation on the Effects of Insb Geometry on the Ingasb Crystal Growth under Microgravity. Microgravity Science and Technology, 35, no. 5. https://doi.org/10.1007/s12217-023-10072-x

Jin, X.; Cheng, X.; Wang, Q.; Wang, B.*; 2023. Numerical analysis of rarefied hypersonic flows over inclined cavities. International Journal of Heat and Mass Transfer, 214. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124401

Jin, X.; Miao, W.; Cheng, X.; Wang, Q.; Wang, B*; 2023. Monte Carlo simulation of inlet flows in atmosphere-breathing electric propulsion. AIAA Journal, In Print.

Liu, Y.; Zhang, Q.*; Zhang, H.; Wang, B.; 2022. Numerical investigation on the performance of internal flow and atomization in the recessed gas-centered swirl coaxial injectors. Aerospace Science and Technology, 129. https://doi.org/10.1016/j.ast.2022.107858

Cai, T.; Backer, S.M.; Cao, F.; Wang, B.; Tang, A.; Fu, J.; Han, L.; Sun, Y.; Zhao, D.*; 2021. NOx emission performance assessment on a perforated plate-implemented premixed ammonia-oxygen micro-combustion system. Chemical Engineering Journal, 417, 128033. https://doi.org/10.1016/j.cej.2020.128033

Cai, T.; Zhao, D.*; Sun, Y.; Ni, S.; Li, W.; Guan, D.; Wang, B.; 2021. Evaluation of NOx emissions characteristics in a CO2-Free micro-power system by implementing a perforated plate. Renewable and Sustainable Energy Reviews, 145, 111150. https://doi.org/10.1016/j.rser.2021.111150

Chen, Z.; Huang, F.; Jin, X.*; Cheng, X.; Wang, B.; 2021. A novel lightweight aerodynamic design for the wings of hypersonic vehicles cruising in the upper atmosphere. Aerospace Science and Technology, 109, 106418. https://doi.org/10.1016/j.ast.2020.106418

Jin, X.; Huang, F.; Miao, W.; Cheng, X.; Wang, B.; 2021. Effects of the boundary-layer thickness at the cavity entrance on rarefied hypersonic flows over a rectangular cavity. Physics of Fluids, 33, 036116. https://doi.org/10.1063/5.0045056

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2021. Effects of corner rounding on aerothermodynamic properties in rarefied hypersonic flows over an open cavity. Aerospace Science and Technology, 110, 106498. https://doi.org/10.1016/j.ast.2021.106498

Um, K.; Hu, X.; Wang, B.; Thuerey, N.; 2021. Spot the difference: accuracy of numerical simulations via the human visual system. ACM Transactions on Applied Perception, 18(2), 6:1-6:15. https://doi.org/10.1145/3449064

Sun, Y.; Cai, T.; Shahsavari, M.; Sun, D.; Sun, X.; Zhao, D.*; Wang, B.; 2021. RANS simulations on combustion and emission characteristics of a premixed NH3/H2 swirling flame with reduced chemical kinetic model. Chinese Journal of Aeronautics, 34(12), 17-27. https://doi.org/10.1016/j.cja.2020.11.017

Cai, T.; Zhao, D.*; Wang, B.; Li, J.; Guan, Y.; 2020. NOx emission and thermal performances studies on premixed ammonia-oxygen combustion in a CO2-free micro-planar combustor. Fuel, 280, 118554. https://doi.org/10.1016/j.fuel.2020.118554

Jin, X.*; Wang, B.; Cheng, X.; Wang, Q.; Huang, F.; 2020. The effects of maxwellian accommodation coefficient and free-stream Knudsen number on rarefied hypersonic cavity flows. Aerospace Science and Technology, 97, 105577. https://doi.org/10.1016/j.ast.2019.105577

Jin, X.; Huang, F.; Cheng, X.; Wang, Q.; Wang, B.*; 2019. Monte Carlo simulation for aerodynamic coefficients of satellites in low-earth orbit. Acta Astronautica, 160, 222–229. https://doi.org/10.1016/j.actaastro.2019.04.012

Rao, Z.; Luo, Y.; Wang, B.*; Xie, Q.; He, W.; 2019. Mitigation of H2/air gaseous detonation via utilization of PAN-based carbon fiber felt. International Journal of Hydrogen Energy, 44, 5054–5062. https://doi.org/10.1016/j.ijhydene.2018.12.196